UHFREADER188.DLL Dynamic Link Library

User’s Guide V1.1
11.
Operation System Requirement:


12.
Function List:


12.1）General Function:


22.2）EPCC1-G2 Function:


32.3）18000-6B Function：


43.
Function Explanation:


43.1) General Function:


43.1.1) AutoOpenComPort():


53.1.2) OpenComPort():


63.1.3) CloseComPort():


63.1.4) CloseSpecComPort():


63.1.5)GetReaderInformation():


73.1.6) WriteComAdr ():


73.1.7) WriteScanTime ():


73.1.8) SetPowerDbm ():


83.1.9) Writedfre ():


83.1.10) Writebaud ():


93.1.11) SetWGParameter ():


93.1.12) SetWorkMode ():


103.1.13) GetWorkModeParameter ():


103.1.14) ReadActiveModeData ():


113.1.15) BuzzerAndLEDControl ():


113.1.16) SetRelay ():


113.1.17) OpenNetPort ():


123.1.18) CloseNetPort ():


123.1.19) SetQS ():


123.1.20) GetQS ():


123.1.21) GetSerialNo ():


133.2) EPCC1-G2 Function:


133.2.1) Inventory_G2 ():


133.2.2) ReadCard_G2 ():


143.2.3) WriteCard_G2 ():


153.2.4) EraseCard_G2 ():


163.2.5) SetCardProtect_G2 ():


173.2.6) DestroyCard_G2 ():


183.2.7) WriteEPC_G2 ():


183.2.18) WriteBlock_G2 ():


193.3) 18000-6B Function:


193.3.1) Inventory_6B ():


193.3.2) Inventory2_6B ():


203.3.3) ReadCard_6B ():


213.3.4) WriteCard_6B ():


213.3.5) CheckLock_6B ():


223.3.6) LockByte_6B ():


224. Return Value Definition


235.ErrorCode Definition





UHFREADER188.DLL is a dynamic link library designed to facilitate EPCC1-G2 and 18000-6B  protocol UHF tag application software development.

1. Operation System Requirement:
WINDOWS 2000/XP/7
2. Function List:
UHFREADER188.DLL includes the following functions：
2.1）General Function:
1)int AutoOpenComPort(int* Port, unsigned char *ComAdr, unsigned char Baud ,int *FrmHandle);

2)int OpenComPort(int Port, unsigned char *ComAdr, unsigned char Baud, int *FrmHandle);

3)int CloseComPort(void);

4)int CloseSpecComPort(int FrmHandle);

5)int GetReaderInformation(unsigned char *ComAdr, unsigned char *VersionInfo, unsigned char *ReaderType, unsigned char *TrType,unsigned char * dmaxfre , unsigned char *dminfre, unsigned char *powerdBm,unsigned char *ScanTime, int FrmHandle);

6)int WriteComAdr(unsigned char *ComAdr, unsigned char *ComAdrData, int FrmHandle);

7)int WriteScanTime(unsigned char *ComAdr, unsigned char *ScanTime, int FrmHandle);

8)int SetPowerDbm (unsigned char *ComAdr, unsigned char powerDbm, int FrmHandle);

9)int Writedfre (unsigned char *ComAdr, unsigned char * dmaxfre, unsigned char * dminfre,int FrmHandle);

10)int Writebaud (unsigned char *ComAdr, unsigned char * baud, int FrmHandle);
11)int SetWGParameter(unsigned char *ComAdr,unsigned char Wg_mode,unsigned char Wg_Data_Inteval,unsigned char Wg_Pulse_Width,unsigned char Wg_Pulse_Inteval,int FrmHandle);

12)int SetWorkMode(unsigned char *ComAdr, unsigned char * Parameter, int FrmHandle);
13)int GetWorkModeParameter(unsigned char *ComAdr, unsigned char * Parameter, int FrmHandle);

14)int ReadActiveModeData (unsigned char *ActiveModeData, unsigned char * Datalength, int FrmHandle);
15) int BuzzerAndLEDControl(unsigned char * ComAdr, unsigned char AvtiveTime, unsigned char SilentTime, unsigned char Times, int FrmHandle);
16) int SetRelay(unsigned char *ComAdr, unsigned char RelayStatus, int FrmHandle);

17)int OpenNetPort (int Port, LPSTR IPaddr,unsigned char *ComAdr, int FrmHandle);
18)int CloseNetPort (int FrmHandle);
19)int SetQS(unsigned char *address, unsigned char Qvalue, unsigned char Session, int FrmHandle);
20)int GetQS(unsigned char *address, unsigned char *Qvalue, unsigned char *Session, int FrmHandle);
21)int GetSerialNo(unsigned char *address, unsigned char *SerialNo, int FrmHandle);
2.2）EPCC1-G2 Function:
1)Int Inventory_G2(unsigned char *ComAdr,unsigned char AdrTID,unsigned char LenTID,unsigned char TIDFlag, unsigned char * EPClenandEPC, int * Totallen, int *CardNum, int FrmHandle);

2) Int ReadCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char  Mem, unsigned char WordPtr, unsigned char Num, unsigned char * Password , unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, unsigned char * Data , unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

3) Int WriteCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char  Mem, unsigned char WordPtr, unsigned char Writedatalen, unsigned char *Writedata,unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, int WrittenDataNum, unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

4) Int EraseCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char  Mem, unsigned char WordPtr, unsigned char Num, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, unsigned char  EPClength, unsigned char * errorcode, int FrmHandle);

5) Int SetCardProtect_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char select, unsigned char setprotect, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, unsigned char EPClength, unsigned char *errorcode, int FrmHandle);

6) Int DestroyCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag,unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

7) Int WriteEPC_G2 (unsigned char *ComAdr, unsigned char * Password, unsigned char * WriteEPC, unsigned char WriteEPClen, unsigned char * errorcode, int FrmHandle);

8) Int WriteBlock_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char  Mem, unsigned char WordPtr, unsigned char Writedatalen, unsigned char *Writedata,unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, int WrittenDataNum, unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

2.3）18000-6B Function：
1)int  Inventory_6B (unsigned char *ComAdr, unsigned char * ID_6B ,int FrmHandle);

2)int  Inventory2_6B (unsigned char *ComAdr, unsigned char  Condition , unsigned char StartAddress, unsigned char mask , unsigned char *  ConditionContent，unsigned char * ID_6B , int * Cardnum,int FrmHandle);
3)int  ReadCard_6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char StartAddress, unsigned char Num, unsigned char * Data,  unsigned char * errorcode, int FrmHandle);

4)int  WriteCard_6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char StartAddress, unsigned char * Writedata, unsigned char Writedatalen, unsigned char * writtenbyte, unsigned char * errorcode, int FrmHandle);

5)int  LockByte _6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char Address, unsigned char * errorcode, int FrmHandle);

6)int  CheckLock_6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char Address, unsigned char * ReLockState,unsigned char * errorcode, int FrmHandle);

3. Function Explanation:
3.1) General Function:
3.1.1) AutoOpenComPort():
Function description:
This function is used to automatically detect the communication port unoccupied by other application and attached with a reader. The function try to establish the connection between them. The protocol parameters are 57600bps, 8 data bits, 1 start bit, 1 stop bit, no parity bit. 

If the connection is established successfully, the function will open the communication port and return a valid handle, otherwise the function will return an error code with a invalid handle(value as -1). 

Usage: 

Int AutoOpenComPort(int * Port, unsigned char *ComAdr, unsigned char Baud, int * FrmHandle);

Parameter: 

Port: Pointed to the communication port number (COM1~COM9) that the reader is detected and connected. 

ComAdr: Pointed to the address of the reader.  

When using broadcasting address 0xFF as ComAdr to call the function, the port number to which the reader is detected and the address of the reader will be writed back to parameter Port and ComAdr; 

When using a designated address 0x00~0xFE as ComAdr to call the function, the port number to which the reader with the specified address is detected will be writed back to parameter Port. 

Constants COM1~COM9 are defined as follows: 

#define COM1  1 

#define COM2  2 

#define COM3  3 

#define COM4  4 

#define COM5  5 

#define COM6  6 

#define COM7  7 

#define COM8  8 

#define COM9  9 
Baud：This value set the baud rate of the serial communication control. 
	baudrate
	Actual baud rate

	0
	9600bps

	1
	19200 bps

	2
	38400 bps

	5
	57600 bps

	6
	115200 bps


FrmHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the reader connected to the port. 

Returns:  

Zero value when successfully, non-zero value when error occurred.
3.1.2) OpenComPort():
Function description:

This function is used to establish the connection between the reader and a specified communication port. The protocol parameters are 19200bps, 8 data bits, 1 start bit, 1 stop bit, no parity bit. 

Usage: 

Int OpenComPort(int Port, unsigned char *ComAdr, unsigned char Baud， int * FrmHandle);

Parameter:  

Port: Communication port number which is a constant from COM1 to COM9 

defined as following: 

#define COM1  1 

#define COM2  2 

#define COM3  3 

#define COM4  4 
#define COM5  5 

#define COM6  6 

#define COM7  7 

#define COM8  8 

#define COM9  9 

ComAdr: Pointed to the address of the reader.  

When using broadcasting address 0xFF as ComAdr to call the function, the address of the reader will be writed back to parameter ComAdr; 

When using a designated address 0x00~0xFE as ComAdr to call the function, the function will detect whether a specified address reader is connected to the designaged communication port. 
Baud：This value set the baud rate of the serial communication control. 
	baudrate
	Actual baud rate

	0
	9600bps

	1
	19200 bps

	2
	38400 bps

	5
	57600 bps

	6
	115200 bps


FrmHandle: Pointed to the communication handle which is binding with the communication port opened successfully. The application software should use this handle to manipulate the reader connected to the port. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.3) CloseComPort():
Function description:  

This function is used to disconnect the reader and release the corresponding communication port resources. In some development environment, the communication port resources must be released before exiting. Otherwise the operation system will become unstable. 

Usage: 

Int CloseComPort(void);

Parameter: None. 

Returns:  

Zero value when successfully, non-zero value when error occurred.

3.1.4) CloseSpecComPort():
Function description:  

This function is used to disconnect the reader with the designated communication port and release the corresponding resources. 

Usage: 

Int CloseSpecComPort(int FrmHandle);
Parameter:

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort.  

Returns:  

Zero value when successfully, non-zero value when error occurred.

3.1.5)GetReaderInformation():

Function description:  

This function is used to get reader-related information such as reader address(ComAdr), firmware version, supported protocol type and InventoryScanTime.

Usage: 
Int GetReaderInformation(unsigned char *ComAdr, unsigned char *VersionInfo, unsigned char *ReaderType, unsigned char *TrType,unsigned char * dmaxfre , unsigned char *dminfre, unsigned char *powerdBm,unsigned char *ScanTime, int FrmHandle);

Parameter:
ComAdr: Pointed to the address of the reader.  

VersionInfo: Pointed to 2 bytes firmware version information. The first byte is version number, the second byte is sub-version number. 

ReaderType: Pointed to the reader type byte. 0x0d lines on UHFREADER188
TrType: Pointed to One bytes supported protocol information. 

dmaxfre: Output variable, Bit7-Bit6 band set for use; Bit5-Bit0 that the current maximum frequency reader to work, the specific definitions, see the user manual.
dminfre: Output variable, Bit7-Bit6 band set for use; Bit5-Bit0 reader work that the current minimum frequency, the specific definitions, see the user manual.

PowerdBm: The output power of reader.Range is 0 to 18,when PowerdBm is 0x00, it means the output power of reader unkown.
ScanTime: Point to the value of time limit for inventory command. Please refer to UHFREADER188 User’s manual for details.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns:  

Zero value when successfully, non-zero value when error occurred.
3.1.6) WriteComAdr ():
Function description:  

This function is used to set a new address of the reader. The address value will store in reader’s inner nonvolatile memory. Default address value is 0x00. The value range is 0x00~0xFE. The address 0xFF is reserved as the broadcasting address.When user try to write a 0xFF to ComAdr, the reader will set the value to 0x00 automatically. 

Usage: 

Int WriteComAdr(unsigned char *ComAdr, unsigned char *ComAdrData, int FrmHandle);

Parameter: 

ComAdr: Pointed to the original address of the reader. 

ComAdrData: Pointed to the new address of the reader.  

FrmHandle: Handle of the corresponding communication port the reader is connected.The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.

3.1.7) WriteScanTime ():
Function description: 

This function is used to set a new value to InventoryScanTime of an appointed reader. The range is 3~255 corresponding to 3*100ms~255*100ms InventoryScanTime. The default value of InventoryScanTime is 30*100ms. 

Usage: 

Int WriteScanTime(unsigned char *ComAdr, unsigned char *ScanTime, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 

InventoryScanTime: Pointed to the value of InventoryScanTime. 

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns:
Zero value when successfully, non-zero value when error occurred.
3.1.8) SetPowerDbm ():
Function description: 
The function is used to set the power of reader. 
Usage: 

Int SetPowerDbm (unsigned char *ComAdr, unsigned char powerDbm, int FrmHandle);
Parameter: 

ComAdr: Pointed to the address of the reader. 

Powerdbm:The output power of reader. range is 0~30 
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.9) Writedfre ():
Function description: 

The function is used to set the reader working of the lower limit and the upper limit of frequency. 

Usage: 

Int Writedfre (unsigned char *ComAdr, unsigned char * dmaxfre, unsigned char * dminfre, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 

dmaxfre: Input variable, Bit7-Bit6 band set for use; Bit5-Bit0 that the current maximum frequency reader to work, the specific definitions, see the user manual.

dminfre: Input variable, Bit7-Bit6 band set for use; Bit5-Bit0 reader work that the current minimum frequency, the specific definitions, see the user manual.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.

3.1.10) Writebaud ():

Function description: 

The function is used to change the serial port baud rate. 

Usage: 

Int Writebaud (unsigned char *ComAdr, unsigned char * baud, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 

Baud: After reader power on, the baud rate of reader is 57600bps. Range is 0~6. 
	baudrate
	Actual baud rate

	0
	9600bps

	1
	19200 bps

	2
	38400 bps

	5
	57600 bps

	6
	115200 bps


Reader support 43000bps baud rate, but ApdComPort control in DLL is not support 43000bps.

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.11) SetWGParameter ():

Function description: 

The function is used to set wiegand parameter. 

Usage: 

Int SetWGParameter (unsigned char *ComAdr, unsigned char Wg_mode,unsigned char Wg_Data_Inteval,unsigned char Wg_Pulse_Width, unsigned char Wg_Pulse_Inteval,int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader.
Wg_mode:Pointed to the mode of wiegand.

Bit0: Wigan 26,34 select bit. Bit0 = 0, choose Wiegand 26, Bit0 = 1 the selection of Wigan 34. 
Bit1: Bit1 = 0  Wiegand output MSB firsr, Bit1 = 1, Wiegand output LSB first. Other bits to retain, the default is 0. 
Wg_Data_Inteval: Output data interval of time (0 ~ 255) * 100ms, the default is 30.
Wg_Pulse_Width: Data pulse width (1 ~ 255) * 100us, the default value is 10.

Wg_Pulse_Inteval: Data pulse interval (1 ~ 255) * 100us, the default value is 15.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.

3.1.12) SetWorkMode ():

Function description: 

The function is used to set work mode parameter. 

Usage: 

Int SetWorkMode(unsigned char *ComAdr, unsigned char *Parameter, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 
Parameter: Pointed to 6 byte with work mode parameter.
From the first byte to the sixth were: 
Read_Mode: Working mode selection, Bit0 = 0: Responses; Bit0 = 1: active mode;

Other places to retain, the default is 0. Only when the Bit0 not equal to 0, the following parameters to be effectiveOther place to retain, the default is 0. Only Bit0 = 1 following parameters to be effective. 
Mode_State: Bit0: protocol select bits. Bit0 = 0,reader support 18000-6C protocol.

Bit1: Output mode select bits. Bit1 = 1 , RS232 output.

Bit2: buzzer prompts to select the bit. Bit2 = 0 opens when the buzzer prompt, Bit2 = 1 buzzer closed when prompted, the default value is 0.

Bit3: we First_Adr mode for output byte or address character parameter selection address. Bit3 = 0,For the word First_Adr when address, For when First_Adr Bit3 = 1 byte address.
Gary: imperial Bit4 choice, Bit1 485 w hen the invalid = 0. When is the common Bit4 = 0, output 485 Imperial rui 485 mode support only single label operation (18,000-6C and 18,000 6B - all effective) (read reserve area, EPC area, TID area, user area, leaflet query). It First_Adr mode for Gary 485 address byte.

Other bits, the default is 0.
Mem_Inven: When the reader work in the 18000-6C protocol when effective, choose to read the storage area or inquiry conducted labels. 0x00: reserved area; 0x01: EPC store; 0x02: TID store; 0x03: user storage area; 0x04:Mulity-Query tag;0x05:One-Query Tag;. Other values reserved. 
First_Adr: Specifies the starting address of the child to read. 0x00 said that starting from the first sub-read, 0x01, said beginning from the first two words, and so on. 
Word_Num: the number of words to read, RS232 output mode to be valid, the range of 0x01 ~ 0x32 rooms. 
Tag_time: Acctive Mode Interval time.Range is (0 to 255)*1s.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.

3.1.13) GetWorkModeParameter ():

Function description: 

The function is used to get work mode parameter. 

Usage: 
Int  GetWorkModeParameter(unsigned char *ComAdr, unsigned char * Parameter, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 
Parameter: Pointed to 10 byte with work mode parameter.

From the first byte to the eleventh, respectively: Wg_mode，Wg_Data_Inteval，Wg_Pulse_Width，Wg_Pulse_Inteval，Read_mode，Mode_state，Mem_Inven，First_Adr，Word_Num，Tag_Time，Accuracy. 
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.14) ReadActiveModeData ():

Function description: 

The function is used to read data with Active mode.
Usage: 

Int ReadActiveModeData(unsigned char *ActiveModeData, unsigned char * Datalength, int FrmHandle);

Parameter: 

ActiveModeData: Point to the output array variable, read the active mode, the reader sends the data, the size of Datalength bytes.
Datalength: Output ,the Length of ActiveModeData.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.15) BuzzerAndLEDControl ():

Function description: 

The function is used to control Buzzer and LED. 

Usage: 

int BuzzerAndLEDControl(unsigned char * ComAdr, unsigned char AvtiveTime, unsigned char SilentTime, unsigned char Times, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 
AvtiveTime:Input. LED lights and buzzer chirping time.Rang is 0~255.

SilentTime: Input,LED and Buzzer silent time. Rang is 0~255.

Times: Input. LED lights and buzzer chirping times.Rang is 0~255.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.16) SetRelay ():

Function description: 

The function is used to set Relay. 

Usage: 

int SetRelay(unsigned char *ComAdr, unsigned char RelayStatus, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 
RelayStatus: Input.two relays. Bit0 and bit1 effective, each corresponding to a relay, is 1 relay suck close, 0 relay release 
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 
Zero value when successfully, non-zero value when error occurred.
3.1.17) OpenNetPort ():

Function description: 

The function is used to open net port.
Usage: 

Int OpenNetPort(int Port,LPSTR IPaddr, unsigned char *ComAdr, *int FrmHandle);
Parameter: 
Port: Pointed to the net port of the reader. 

IPaddr: Pointed to string of reader IP.
ComAdr: Pointed to the address of the reader. 
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function OpenNetPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.18) CloseNetPort ():

Function description: 

The function is used disconnected net port.
Usage: 

Int CloseNetPort (int FrmHandle);
Parameter: 

FrmHandle: Handle of the corresponding communication net port the device is connected. The handle value is got when calling function OpenNetPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.19) SetQS ():

Function description: 

The function is used to set query-tag-parameter on actived mode. 

Usage: 

int SetQS(unsigned char *ComAdr, unsigned char Qvalue, unsigned char Session, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 
Qvalue: Input,Q value,range is 0-15;

Session: Input,Session value ,range is 0-3;
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.20) GetQS ():

Function description: 

The function is used to get query-tag-parameter on actived mode. 

Usage: 

int SetQS(unsigned char *ComAdr, unsigned char *Qvalue, unsigned char *Session, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 
Qvalue: Output,Q value,range is 0-15;

Session: Output,Session value ,range is 0-3;
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.1.21) GetSerialNo ():

Function description: 

The function is used to get reader serial number.. 

Usage: 

int GetSerialNo(unsigned char *ComAdr, unsigned char *SerialNo, int FrmHandle);

Parameter: 

ComAdr: Pointed to the address of the reader. 
SerialNo: Output,4 bytes.reader’s serial number;
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.2) EPCC1-G2 Function:
3.2.1) Inventory_G2 ():
Function description: 

The function is used to detect tags in the inductive area and get their EPC values.
Usage: 

Int Inventory_G2 (unsigned char *ComAdr, unsigned char AdrTID,unsigned char LenTID,unsigned char TIDFlag,unsigned char *EPClenandEPC, int * Totallen, int *CardNum, int FrmHandle);

Parameter: 

ComAdr: Input, pointed to the address of the reader. 
AdrTID:Input,query TID’s start address.

LenTID: Input,query TID’s data word number.

TIDFlag: Input,query TID’s falg. 
TIDFlag=1:query TID.

TIDFlag=0:query EPC.
EPClenandEPC: Output, Pointed to the array storing the inventory result. It is the EPC data of tag Reader read. The unit of the array includes 1 byte EPCLen and N (the value of EPCLen) bytes EPC. It is the former high-word, low word in the EPC of each tag. It is the former high-byte, low byte in the each word.
Totallen: Output. Pointed to the byte count of the  EPClenandEPC.
CardNum: Output. Pointed to the number of tag detected.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 
Returns: 

Zero value when successfully, value:
0x01  Return before Inventory finished
0x02  the Inventory-scan-time overflow
0x03  More Data
0x04  Reader module MCU is Full
others when error occurred.

3.2.2) ReadCard_G2 ():
Function description: 

The function is used to read part or all of a Tag’s Password, EPC, TID, or User memory. To the word as a unit, start to read data from the designated address. 
Usage: 

Int ReadCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char  Mem, unsigned char  WordPtr, unsigned char Num, unsigned char * Password , unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, unsigned char * Data , unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 

EPC: Input, Pointed to the array of tag’s EPC value. It is the EPC number of tag. 
Mem: Input, Pointed to select the memory area to read. 
0x00: Password area;
0x01: EPC memory area;
0x02: TID memory area;
0x03: User’s memory area;
Other value when error occurred.

WordPtr: Input, Pointed to the address of tag data to read (Word/Hex). Such as, 0x00 stand in start to read data from first word, 0x01 stand in start to read data from second word, and so on.
Num: Input, Pointed to the number of word to read. Can not set 0 or 120, otherwise, return the parameter error information. Num <= 120
Password: Input, Pointed to the 8 bytes of tag’s accesspassword value. From left to right it is the former high-word, low word in the accesspassword. 
maskadr: Input, EPC masking starting address of byte. 
maskLen: Input, Masking bytes. 
maskFlag: Input,EPC masking Flag.
0x00:disabled;

0x01:enabled; 
Data: Output.Pointed to the array of the data read from tag. 
EPClength: Input, Pointed to the byte length of EPC. 
Errorcode: Output, Pointed to an explanation byte when the function return value equals 0xFC. 
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, the Read data is in Data, non-zero value when error occurred.

3.2.3) WriteCard_G2 (): 
Function description: 

The function is used to write several words in a Tag’s Reserved, EPC, TID, or User memory. 
Usage: 

Int WriteCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char  Mem, unsigned char WordPtr, unsigned char Writedatalen, unsigned char * Writedata, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, int WrittenDataNum, unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 

EPC: Input, Pointed to the array of tag’s EPC value. It is the EPC number of tag. 

Mem: Input, Pointed to select the memory area to read. 

0x00: Password area

0x01: EPC memory area

0x02: TID memory area

0x03: User’s memory area

Other value when error occurred.
WordPtr: Input, Pointed to the starting address of tag data to write (Word/Hex).If write in the EPC area, it will ignore the start address, and start to write at the address 0x02.
Writedatalen: Input, Pointed to the number of bytes to be written. It must be even and greater than 0. The number of bytes is equal toThe actual number of data to be written. Otherwise, return the parameter error information.  
Writedata: Input, Pointed to the array of the word to be written. For example, WordPtr equal 0x02, then the first word in Data write in the address 0x02 of designated Mem, the second word write in 0x03, and so on. 
Password: Input, Pointed to the 8 bytes of tag’s accesspassword value. From left to right it is the former high-word, low word in the accesspassword. 
maskadr: Input, EPC masking starting address of byte. 
maskLen: Input, Masking bytes. 
maskFlag: Input,EPC masking Flag.
0x00:disabled;

0x01:enabled; 
WrittenDataNum: Output, the number of the word has been written.in word units.
EPClength: Input, Pointed to the byte length of EPC. 

Errorcode: Output, Pointed to an explanation byte when the function return value equals 0xFC. 

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.

3.2.4) EraseCard_G2 ():
Function description: 
The function is used to erase multiple words in a Tag’s Password, EPC, TID, or User memory. 
Usage: 

Int EraseCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char Mem, unsigned char WordPtr, unsigned char Num, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag,unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 

EPC: Input, Pointed to the array of tag’s EPC value. It is the EPC number of tag. 

Mem: Input, Pointed to select the memory area to read. 

0x00: Password area

0x01: EPC memory area

0x02: TID memory area

0x03: User’s memory area

Other value when error occurred.
WordPtr: Input, Pointed to the address of tag data to erase (Word/Hex). Such as, 0x00 stand in start to erase data from first word, 0x01 stand in start to erase data from second word, and so on. When ease EPC area, WordPtr must be greater than or equal to 0x02.Otherwise, return the parameter error information. 
Num: Input, Pointed to the number of word to erase. Can not set 0, otherwise, return the parameter error information.
Password: Input, Pointed to the 8 bytes of tag’s accesspassword value. From left to right it is the former high-word, low word in the accesspassword. 
maskadr: Input, EPC masking starting address of byte. 
maskLen: Input, Masking bytes. 
maskFlag: Input,EPC masking Flag.
0x00:disabled;

0x01:enabled; 
EPClength: Input, Pointed to the byte length of EPC. 

Errorcode: Output, Pointed to an explanation byte when the function return value equals 0xFC. 

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.

3.2.5) SetCardProtect_G2 ():
Function description: 
The function is used to set Password area as readable and writeable from any state, readable and writeable from the secured state, permanently readable and writeable, never readable and writeable.It used to set EPC, TID or User as writeable from any state, writeable from the secured state, permanently writeable, never writeable.
Usage: 

Int SetCardProtect_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char select, unsigned char setprotect, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 

EPC: Input, Pointed to the array of tag’s EPC value. It is the EPC number of tag. 

Select: Input.
    0x00, Control kill password protection setting.

    0x01, Control access password protection setting.

    0x02, Control EPC memory protection setting.

    0x03, Control TID memory protection setting.

    0x04, Control User memory protection setting.
Other value when error occurred.
Setprotect: Input.
When Select is 0x00 or 0x01, SetProtect means as follows:
0x00: readable and writeable from any state.
0x01: permanently readable and writeable.
0x02: readable and writeable from the secured state.
0x03: never readable and writeable
When Select is 0x02, 0x03 or 0x04, SetProtect means as follows:
0x00: writeable from any state.

0x01: permanently writeable.
0x02: writeable from the secured state.
0x03: never writeable.
Password: Input, Pointed to the 8 bytes of tag’s accesspassword value. From left to right it is the former high-word, low word in the accesspassword. 
maskadr: Input, EPC masking starting address of byte. 
maskLen: Input, Masking bytes. 
maskFlag: Input,EPC masking Flag.
0x00:disabled;

0x01:enabled; 
EPClength: Input, Pointed to the byte length of EPC. 

Errorcode: Output, Pointed to an explanation byte when the function return value equals 0xFC. 

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 
Returns: 

Zero value when successfully, non-zero value when error occurred.
3.2.6) DestroyCard_G2 ():
Function description: 
The function is used to destroy tag. After the tag destroyed, it never process command.
Usage: 

Int DestroyCard_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, unsigned char EPClength, unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 

EPC: Input, Pointed to the array of tag’s EPC value. It is the EPC number of tag. 

Password: Input, Pointed to the 8 bytes of tag’s accesspassword value. From left to right it is the former high-word, low word in the accesspassword. 
maskadr: Input, EPC masking starting address of byte. 
maskLen: Input, Masking bytes. 
maskFlag: Input,EPC masking Flag.
0x00:disabled;

0x01:enabled; 
EPClength: Input, Pointed to the byte length of EPC. 

Errorcode: Output, Pointed to an explanation byte when the function return value equals 0xFC. 

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.2.7) WriteEPC_G2 ():
Function description: 

The function is used to write EPC value in a Tag’s EPC memory. Random write one tag in the antenna.
Usage: 

Int WriteEPC_G2 (unsigned char *ComAdr, unsigned char * Password, unsigned char * WriteEPC, unsigned char WriteEPClen, unsigned char * errorcode, int FrmHandle);
Parameter: 

ComAdr: Input. Pointed to the address of the reader. 
Password: Input, Pointed to the 8 bytes of tag’s accesspassword value. From left to right it is the former high-word, low word in the accesspassword. 
WriteEPC: Input, Pointed to the array of the new tag’s EPC value to overwrite the old tag’s EPC value. 
WriteEPClen: Input, Pointed to the number of bytes of new EPC value.range is 2~30. It must be even number, such as 2, 4, and so on.
Errorcode: Output, Pointed to an explanation byte when the function return value equals 0xFC. 

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.2.18) WriteBlock_G2 (): 
Function description: 

The function is used to write words in a Tag’s Reserved, EPC, TID, or User memory. 

Usage: 

Int WriteBlock_G2 (unsigned char *ComAdr, unsigned char * EPC, unsigned char  Mem, unsigned char WordPtr, unsigned char Writedatalen, unsigned char * Writedata, unsigned char * Password, unsigned char maskadr, unsigned char maskLen, unsigned char maskFlag, int WrittenDataNum, unsigned char EPClength, unsigned char * errorcode, int FrmHandle);
Parameter: 

ComAdr: Input. Pointed to the address of the reader. 

EPC: Input, Pointed to the array of tag’s EPC value. It is the EPC number of tag. 

Mem: Input, Pointed to select the memory area to read. 

0x00: Password area

0x01: EPC memory area

0x02: TID memory area

0x03: User’s memory area

Other value when error occurred.
WordPtr: Input, Pointed to the starting address of tag data to write (Word/Hex).If write in the EPC area, it will ignore the start address, and start to write at the address 0x02.

Writedatalen: Input, Pointed to the number of bytes to be written. It must be even and greater than 0. The number of bytes is equal toThe actual number of data to be written. Otherwise, return the parameter error information.  

Writedata: Input, Pointed to the array of the word to be written. For example, WordPtr equal 0x02, then the first word in Data write in the address 0x02 of designated Mem, the second word write in 0x03, and so on. 
Password: Input, Pointed to the 8 bytes of tag’s accesspassword value. From left to right it is the former high-word, low word in the accesspassword. 
maskadr: Input, EPC masking starting address of byte. 
maskLen: Input, Masking bytes. 
maskFlag: Input,EPC masking Flag.
0x00:disabled;

0x01:enabled; 
WrittenDataNum: Output, the number of the word has been written.in word units.
EPClength: Input, Pointed to the byte length of EPC. 

Errorcode: Output, Pointed to an explanation byte when the function return value equals 0xFC. 

FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.3) 18000-6B Function:

3.3.1) Inventory_6B (): 
Function description: 
The function is used to detect only one tag in the inductive area and get their ID values.If more than one tag in the inductive area at the same time, reader may be detect nothing.
Usage: 

Int Inventory_6B (unsigned char *ComAdr, unsigned char * ID_6B , int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 
ID_6B: Output, Pointed to the array storing the inventory result. The array is 8 bytes ID.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.3.2) Inventory2_6B (): 
Function description: 
The function is used to according to the given conditions detect tags in the inductive area and get their ID values.
Usage: 

Int Inventory2_6B (unsigned char *ComAdr, unsigned char * Condition , unsigned char StartAddress, unsigned char mask , unsigned char * ConditionContent ，unsigned char * ID_6B , int * Cardnum, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 
Condition: Input, the condition of detecting tags.

0x00: equal to condition.

0x01: unequal to condition.

0x02: greater than to condition.

0x03: less than to condition.
StartAddress: Input, the tag’s start address to compare.
Mask: Input, mask. Pointed to the data is used to compare. Highest bit in the mask correspond with the far-left byte in the ConditionContent.The corresponding bit in the mask is 1 to compare the bit in the ConditionContent with the corresponding byte in the tag.The corresponding bit in the mask is 0, not compare.
ConditionContent: Intput, Pointed to the array is used to compare.The array is 8 bytes
ID_6B: Output, Pointed to the array storing the inventory result. The unit of the array is 8 bytes ID.
Cardnum: Output, the count of tag
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, value:

0x15  Return before Inventory finished

0x16  the Inventory-scan-time overflow

0x17  More Data

0x18  Reader module MCU is Full

others when error occurred.
3.3.3) ReadCard_6B ():
Function description: 
The function is used to start to read several bytes from the designated address. 
Usage: 

Int ReadCard_6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char StartAddress, unsigned char Num, unsigned char * Data,  unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 
ID_6B: Input, Pointed to the array storing the inventory result. The unit of the array is 8 bytes ID.
StartAddress: Input, the start address to read data. Range is 8~223. If the adrress more than range, reader will return parameter error information. 

Num: Input, pointed to the number of bytes to read, range is 1~32. If StartAddress + Num greater than 224, or Num greater than 32 or is zero, reader will return parameter error information. 

Data: Output, Pointed to the array storing the read result.

Errorcode: Output, reservation.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.3.4) WriteCard_6B (): 

Function description: 
The function is used to start to write several bytes from the designated address. 
Usage: 

Int WriteCard_6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char StartAddress, unsigned char * Writedata, unsigned char Writedatalen, unsigned char * writtenbyte, unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input. Pointed to the address of the reader. 
ID_6B: Input, Pointed to the array storing the inventory result. The unit of the array is 8 bytes ID.
StartAddress: Input, pointed to the start address to read data. Range is 8~223. If the adrress more than range, reader will return parameter error information. 
Writedata: Input, pointed to the array to write, range is 1~32. If Address + Writedatalen greater than 224, or Writedata greater than 32 or is zero, reader will return parameter error information. The high bytes of Writedata write in the low address in tag.
Writedatalen: Input, pointed to the number of bytes to write. 
Writtenbyte: Output.Pointed to the number of bytes written successfully start from the high byte in the Writedata. 

Errorcode: Output, reservation.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
Note: If tag does not support the read protection setting, it must be unprotection.

3.3.5) CheckLock_6B ():
Function description: 
The function is used to check whether the designated byte is locked. 
Usage: 

Int CheckLock_6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char Address, unsigned char * ReLockState，unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input, pointed to the address of the reader. 
ID_6B: Input, Pointed to the array storing the inventory result. The unit of the array is 8 bytes ID.
Address: Input. Pointed to the address is used to check whether is locked. Range is 0~223. Beyond this range, reader will return parameter error.
ReLockState: Output.

0x00, the byte is unlocked.

0x01, the byte is locked, cannot lock it again.

Errorcode: Output, reservation.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
3.3.6) LockByte_6B ():

Function description: 
The function is used to lock the designated byte.
Usage: 

Int LockByte_6B (unsigned char *ComAdr, unsigned char * ID_6B , unsigned char Address, unsigned char * errorcode, int FrmHandle);

Parameter: 

ComAdr: Input, pointed to the address of the reader. 
ID_6B: Input, Pointed to the array storing the inventory result. The unit of the array is 8 bytes ID. 

Address: Input, pointed to the address to lock. Range is 8~223. Beyond this range, reader will return parameter error.

Errorcode: Output, reservation.
FrmHandle: Handle of the corresponding communication port the reader is connected. The handle value is got when calling function AutoOpenComPort or OpenComPort. 

Returns: 

Zero value when successfully, non-zero value when error occurred.
4. Return Value Definition
#define  InventoryReturnEarly_G2       0x01 Return before Inventory finished

#define  InventoryTimeOut_G2           0x02 the Inventory-scan-time overflow

#define  InventoryMoreData_G2          0x03 More Data

#define  ReadermoduleMCUFull_G2        0x04 Reader module MCU is Full 

#define  AccessPasswordError           0x05 Access password error
#define  DestroyPasswordError          0x09 Destroy password error
#define  DestroyPasswordCannotZero     0x0a Destroy password error cann’t be Zero

#define  TagNotSupportCMD              0x0b Tag Not Support the command 
#define  AccessPasswordCannotZero      0x0c Use the commmand,Access 
Password Cann’t be Zero 

#define  TagProtectedCannotSetAgain    0x0d Tag is protected,cannot set it again
#define  TagNoProtectedDonotNeedUnlock 0x0e Tag is unprotected,no need to reset it
#define  ByteLockedWriteFail           0x10 There is some locked bytes,write fail

#define  CannotLock


           0x11 can not lock it 

#define  LockedCannotLockAgain

    0x12 is locked,cannot lock it again
#define  ParameterSaveFailCanUseBeforeNoPower

0x13 Save Fail,Can Use Before Power
#define  CannotAdjust

           0x14 Cannot adjust

#define  InventoryReturnEarly_6B
    0x15 Return before Inventory finished

#define  InventoryTimeOut_6B

    0x16 Inventory-Scan-Time overflow 

#define  InventoryMoreData_6B

    0x17 More Data
#define  ReadermoduleMCUFull_6B

    0x18 Reader module MCU is full
#define  NotSupportCMDOrAccessPasswordCannotZero

0x19 Not Support Command Or AccessPassword Cannot be Zero 

#define  CMDExecuteErr                 0xF9 Command execute error
#define  GetTagPoorCommunicationCannotOperation 
0xFA Get Tag,Poor Communication,Inoperable 
#define  NoTagOperation



    0xFB No Tag Operable
#define  TagReturnErrorCode


    0xFC Tag Return ErrorCode
#define  CMDLengthWrong



    0xFD Command length wrong
#define  IllegalCMD



  
    0xFE Illegal command
#define  ParameterError

           0xFF Parameter Error
#define  CommunicationErr              0x30 Communication error
#define  RetCRCErr             

    0x31 CRC checksummat error
#define  RetDataErr          

    0x32 Return data length error
#define  CommunicationBusy    

    0x33 Communication busy

#define  ExecuteCmdBusy      

    0x34 Busy,command is being executed

#define  ComPortOpened    


    0x35 ComPort Opened

#define  ComPortClose       


    0x36 ComPort Closed

#define  InvalidHandle      


    0x37 Invalid Handle

#define  InvalidPort      

           0x38 Invalid Port 
#define  RecmdErr          

 
    0XEE Return command error
5.ErrorCode Definition
#define  OtherError          

0x00  Other error
#define  MemoryOutPcNotSupport
0x03  Memory out or pc not support
#define  MemoryLocked         
0x04  Memory Locked and unwritable
#define  NoPower              
0x0b  No Power,memory write operation 
cannot be executed
#define  NotSpecialError     

0x0f  Not Special Error,tag not support 
special errorcode
1

